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Recent theoretical studies of the van der Waals complexes formed between water and the two
main components of air, nitrogen and oxygen, are reviewed. Combined with previous work on
the water–argon complex, the results allow non-ideal thermodynamic properties of water–air
mixtures to be calculated. The intermolecular potential energy surfaces for these complexes
have been calculated using a combination of supermolecule methods and perturbation
theory, as described in a previous review. Theoretical techniques introduced since this previous
work include the extension of the intermolecular perturbation theory to open-shell electronic
species, as required for the water–oxygen complex, and new and more accurate calculations
of dispersion energy coefficients. Spin-unrestricted, time-dependent coupled cluster theory
has been used for calculating dispersion energy coefficients for the water–oxygen complex,
and this method is described and compared with other accurate methods, and a possible
alternative method is suggested for future work. The results obtained for the water–nitrogen
complex are highly satisfactory. With little more computational effort than is required to
produce a second-order Moller–Plesset supermolecule potential energy surface, the intermole-
cular potential is calculated to an accuracy which appears to be comparable to coupled-cluster
calculations with perturbative triple excitations. For the water–oxygen complex, the different
theoretical methods produce potential energy surfaces with larger discrepancies than for
water–nitrogen, although they predict the main features of the potential energy surface better
than calculations in the literature. Although few experimental measurements of water–
oxygen virial coefficients are available, the agreement of theoretical predictions with these is
reasonable, and the agreement with the better characterized water–air virial coefficients
is very good. The review concludes with a forward look to work on larger molecules.
Increasing the size of the interacting molecules creates a number of practical problems. Some
problems, including the steep scaling of computation time with system size, are common to
all methods. The use in the current work of a damped multipole expansion about the molecular
centres also causes problems when larger molecules are considered. The review therefore con-
siders methods that can be used to reduce the unfavourable size scaling, to reduce the size of the
basis set, and to use damped atomic multipole expansions, which are centred on the nuclei of
the interacting molecules.
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1. Overview

Weak intermolecular potentials, such as van der Waals interactions and hydrogen
bonds, determine many important physical properties of molecular substances.
However, the intermolecular potential surface is difficult to calculate accurately, for
several reasons: it is a small difference of much larger electronic energies, it is affected
by the outer regions of the molecular electron densities, it depends strongly on electron
correlation, and it is a multidimensional function which cannot easily be interpolated
or fitted. In a previous review [1], the advantages and disadvantages of using super-
molecule methods and perturbation theory to calculate intermolecular potentials were
discussed, and a method was presented for combining the favourable qualities of
both. This SIMPER method (Systematic InterMolecular Potential Extrapolation
Routine) was shown to give results of comparable accuracy to the much more expensive
coupled-cluster CCSD with perturbative triples (CCSD(T)) method, for a range of
weakly bound molecular complexes.

The SIMPER approach to calculating interaction energies between pairs of molecules
involves a (counterpoise-corrected) supermolecule calculation of the interaction energy,
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Esup, at each required point on the potential energy surface. Perturbation theory is then
used, firstly to calculate the contributions EðkÞ

sup to the supermolecule energy at low
orders k of the intermolecular perturbation (usually up to second or third order),
and secondly to calculate analogous contributions, E

ðkÞ
high, up to the same order of the

intermolecular perturbation, but treating the electron correlation more accurately
than was done in the supermolecule calculation. These ‘higher-level’ contributions
E
ðkÞ
high are used instead of the ‘lower-level’ supermolecule contributions EðkÞ

sup, to give
the SIMPER interaction energy,

ESIMPER ¼ Esup �
X
k

E ðkÞ
sup þ

X
k

E
ðkÞ
high: ð1Þ

In a typical implementation, the supermolecule method is second-order Moller–
Plesset theory (MP2), Rayleigh–Schrödinger perturbation theory (RSPT) is used to
obtain the perturbative terms, and the ‘higher-level’ contributions are calculated
using coupled-cluster theory with single and double substitutions (CCSD). More details
are given in the following sections of this review. The resulting potential energy surface
is usually found to improve on the original supermolecule calculations, because the per-
turbative components of the supermolecule energy are replaced by components with
higher-level electron correlation. Since supermolecule calculations are used, the result-
ing SIMPER interaction energy also contains the important short-range exchange-
repulsion energy which is absent in RSPT, as well as higher-order terms in the intermo-
lecular perturbation, which would be absent if only (truncated) perturbation theory
were used. These higher-order terms in the energy are not recalculated at a higher
level of electron correlation. This is reasonable, because they are usually significantly
smaller than the lower-order terms, and the accurate calculation of higher-order ener-
gies using perturbation theory often requires an impractically large computational
effort.

In practice, the basic scheme of equation (1) is modified in several ways. The first-
order energy is treated exactly as shown, but the second-order energy, which is a sum
of induction and dispersion energy contributions, is more expensive to calculate at
a highly correlated level, especially the dispersion energy. The dispersion energy is
therefore calculated as a damped multipole series at each point on the potential
energy surface:

Edisp ¼ �
X
n¼6

Cn fnðbRÞR
�n, ð2Þ

where R is the separation between the molecules, Cn is a dispersion energy coefficient,
and fn is a ‘universal’ damping function, which depends on separation and on a length
scaling parameter b, and is represented as an incomplete gamma function [2],

fnðbRÞ ¼ 1� e�bR
Xn
k¼0

ðbRÞk

k!
: ð3Þ
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Instead of recalculating the total dispersion energy, the SIMPER method involves
recalculating only the dispersion energy coefficients Cn at a higher level of electron
correlation. The damping functions are assumed to keep the same form, although the
length scaling parameter is modified [3–5] by assuming that the dimensionless quantity
b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C8=C6

p
is the same for the ‘low-level’ and ‘high-level’ calculations, at each point on

the surface.
In order to use equation (2) to calculate the dispersion energy, it is necessary to cal-

culate dispersion energy coefficients for the interacting pair of molecules. The methods
that have been implemented in SIMPER are described in section 2, and further modi-
fications of the SIMPER method and its application to the water–nitrogen and water–
oxygen interactions are then described in section 3 and section 4. The water–oxygen
potential energy surface is the first complete intermolecular potential for this interaction
in the literature, and it is the first SIMPER potential energy surface for an interaction
involving an open-shell molecule.

The second part of this review considers the possibility of using SIMPER for mole-
cules larger than water and first-row diatomics. The first problem is that equation (2)
cannot be used for ‘large’ molecules, because an expansion using the distance R between
the centres of the molecules does not converge, or converges too slowly. It is likely that
molecules with more than two heavy atoms (such as CO2) cannot be treated in this way.
Instead, the intermolecular potential, and the dispersion energy in particular, needs
to be expanded as a sum of pair interactions between atoms. The development of
an atomistic version of equation (2) requires atomic dispersion energy coefficients,
and these can be calculated from atomic polarizabilities. Some recent developments
in calculating atomic polarizabilities are reviewed in section 5. For even larger mole-
cules, the supermolecule and perturbative calculations required by the SIMPER
method are not feasible, and additional approximations are required. These are dis-
cussed further in section 6.

Atomic units are used in this review. The atomic unit of length is the Bohr,
a0 ¼ 5:291772� 10�11 m, and the atomic unit of energy is the Hartree, Eh ¼

4:35975� 10�18 J.

2. Calculation of dispersion energy coefficients

The dispersion energy Edisp plays a leading role in van der Waals interactions between
non-polar molecules, and dispersion energy coefficients are an important part of the
total dispersion energy. At sufficiently large intermolecular separations R, the disper-
sion energy can be approximated well by the first few terms of a multipole series,

Edisp; mult ¼ �
X
n�6

CnR
�n, ð4Þ

where Cn is a dispersion energy coefficient. Since the multipole series does not take
charge density overlap into account, it converges to the wrong value, or diverges,
at physically important separations including the equilibrium geometry. A damped
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multipole series (equation (2)) is useful at intermediate and short intermolecular
separations [6–9]: the damping functions fn(bR) are 1 for large R, but tend rapidly to
zero as R decreases.

The dispersion energy coefficients Cn depend on the orientations of the molecules,
but orientation-independent dispersion energy coefficients Cdisp;l1�1;l2�2;l3�3;l4�4 can
also be defined [10], where n ¼ l1 þ l2 þ l3 þ l4 þ 2. They can be used to calculate the
multipolar dispersion energy at any intermolecular geometry (R;�)

Edisp;multðR;�Þ ¼ �
X
l1, �1

X
l2, �2

X
l3, �3

X
l4, �4

Tl1, �1, l3, �3ðR;�Þ

� Tl2, �2, l4, �4ðR;�ÞCdisp;l1�1;l2�2;l3�3;l4�4 :

ð5Þ

The notation ðl, �Þ indicates that real multipoles are used; they are related to the real
and imaginary parts of the complex multipoles (l,m) [11]. For example, the three real
multipole operators for l¼ 1 are the expectation values of x, y and z. The function
Tl, �, l0, �0 ðR;�Þ is the interaction between a multipole Ql, � of molecule A and a multipole
Ql0, �0 of molecule B [11], and consists of the product of an orientation-dependent
function and an inverse power of separation R�l�l0�1.

Accurate calculation of dispersion energy coefficients is difficult for all but the smal-
lest atoms and molecules. For large n, high-angular-momentum polarization functions
are needed in the basis set, and the calculations are sensitive to the electronic wave func-
tion remote from the nuclei, which means that large basis sets with a balance between
diffuse and contracted functions are required. The contribution of electron correlation
to the dispersion energy coefficients is also important.

Perturbation theory can be used to derive an expression for the dispersion energy
coefficients Cdisp;l1�1;l2�2;l3�3;l4�4 , and hence Cn, for two molecules A and B in their
electronic ground states  ð0Þ

A ,  ð0Þ
B :

Cdisp;l1�1;l2�2;l3�3;l4�4 ¼
X

a>0, b>0

 ð0Þ
A Q̂A, l1�1

��� ��� a
A

D E
 a
A Q̂A, l2�2

��� ��� ð0Þ
A

D E

�  ð0Þ
B Q̂B, l3�3

��� ��� b
B

D E
 b
B Q̂B, l4�4

��� ��� ð0Þ
B

D E.
Ea
A � E

ð0Þ
A þ Eb

B � E
ð0Þ
B

� � ð6Þ

where the energies E
ð0Þ
A , E

ð0Þ
B , Ea

A and Eb
B correspond to the electronic wave functions

 ð0Þ
A ,  ð0Þ

B ,  a
A and  b

B respectively, and Q̂A, l� is a real multipole operator centred on
molecule A. The sum over electronically excited states  a

A and  b
B of the molecules

is formally infinite, and has a significant contribution from continuum states, so this
equation cannot be used directly.

There are two commonly used methods for transforming equation (6) into a
form that can be used in practical calculations. One method uses frequency-dependent
polarizabilities, and the other method uses pseudostates.

Frequency-dependent polarizabilities are defined using perturbation theory as

�Al�, l0�0 ð!Þ ¼ 2
X
a>0

Ea
A � E

ð0Þ
A

� �
 ð0Þ
A Q̂A, l�

��� ��� a
A

D E
 a
A Q̂A, l0�0

��� ��� ð0Þ
A

D E
Ea
A � E

ð0Þ
A

� �2
�!2

: ð7Þ
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The quantity ! can conveniently be taken to have dimensions of energy rather than
frequency in this context, but the general usage of the term ‘frequency’ is followed
here. Equation (7) enables the expression for the dispersion energy coefficients to be
transformed to an integral over imaginary-frequency-dependent polarizabilities [12]:

Cdisp;l1�1;l2�2;l3�3;l4�4 ¼
1

2�

Z
�Al1�1, l2�2ði!Þ�

B
l3�3, l4�4

ði!Þd!: ð8Þ

The integral over frequencies is straightforward to evaluate using numerical methods,
so the problem of calculating dispersion energy coefficients reduces to one of evaluating
the imaginary-frequency-dependent polarizabilities of the interacting molecules. These

can be obtained from the response of the molecule to a time-dependent perturbation,
as discussed in section 2.1.

In the pseudostate method [13], the electronic Hamiltonian is diagonalized in a many-
electron basis set to produce a ground state and a number of electronically excited
states. If these are inserted into equation (6), and the basis set is chosen carefully,
the result closely approximates the exact dispersion energy coefficients. Similarly, the
pseudostates can be used to evaluate frequency-dependent polarizabilities using
equation (7). The pseudostates do not need to include accurate excited states, with
the possible exception of low-lying states, if all that is required is the polarizabilities
at imaginary frequencies and the dispersion energy coefficients [14].

The computational cost of calculating the dispersion energy coefficients from pseu-
dostates scales as the product of the number of pseudostates on the two molecules,
which can become inconveniently large. To minimize the computational cost, the
number of pseudostates can be reduced, often by several orders of magnitude,
using a fitting procedure. The imaginary-frequency-dependent polarizabilities are
first calculated using the full set of pseudostates, or using some other method such
as time-dependent perturbation theory, and then a small set of pseudostates is
fitted to the polarizabilities. This can be done independently for every set of angular
momentum indices. Three fitted pseudostates for each set of l�, l0�0 indices is usually
a sufficient number to give excellent agreement with the calculated polarizabilities
over the whole range of imaginary frequencies. Unlike the electronic (pseudo-)states
obtained from diagonalizing the electronic Hamiltonian, the fitted pseudostates are
not many-electron functions. They simply consist of two scalar quantities: the
pseudo-excitation energy, Ea

A � E
ð0Þ
A , and the multipole interaction strength,

h ð0Þ
A

��Q̂A, l�

�� a
Aih 

a
A

��Q̂A, l0�0
�� ð0Þ

A i.
Dispersion energy coefficients can therefore be calculated using either imaginary-

frequency-dependent polarizabilities or pseudostates of the interacting molecules. The
usual method for calculating these quantities is time-dependent perturbation theory.
This is reviewed in section 2.1, and some results are given in section 2.2.
Alternatively, it is possible to use a projection operator to shift the ground-state
energy of the molecule, which enables pseudostates to be calculated. This ‘energy
shift’ method was used in our calculations on the water–nitrogen dimer, see section 3,
and it does not seem to have been widely reported in the literature, so it is briefly
described in section 2.3.
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2.1. Time-dependent perturbation theory

The frequency-dependent polarizability defined in equation (7) can be calculated by
adding a time-dependent perturbation Q̂AðtÞ to the unperturbed zero-order electronic
Hamiltonian Ĥ

ð0Þ
A :

ĤA ¼ Ĥ
ð0Þ
A þ �Q̂A;l� ei!t þ e�i!t

� �
þ �Q̂Al0�0 ; ðe

i!t þ e�i!t
�
: ð9Þ

The unperturbed wave function is  ð0Þ
A , which is independent of t. The perturbed wave

function is expanded in powers of l, � and ei!t:

 A ¼  ð0Þ
A þ � ð1;0;1Þ

A ei!t þ � ð1;0;�1Þ
A e�i!t þ � ð0;1;1Þ

A ei!t þ � ð0;1;�1Þ
A e�i!t þ � � � : ð10Þ

and the energy EA is expanded in a similar way:

EA ¼ E
ð0Þ
A þ �E ð1;0;1Þ

A ei!t þ �E ð1;0;�1Þ
A e�i!t þ �E ð0;1;1Þ

A ei!t þ �E ð0;1;�1Þ
A e�i!t

þ ��E ð1;1;0Þ
A þ ��E ð1;1;2Þ

A e2i!t þ ��E ð1;1;�2Þ
A e�2i!t . . . ,

ð11Þ

where the quantities  ðp, q; sÞ
A and E

ðp, q; sÞ
A , which multiply �p�qei!ts in these equations,

are time-independent. The Hamiltonian, wave function and energy are substituted
into a time-dependent Lagrangian equation [15, 16]

ĤA � i
d

dt

� �
 A ¼ EA A: ð12Þ

Equating powers of l, � and ei!t on both sides of the resulting equation gives the
following expressions for the perturbed wave function and energy:

Ĥ
ð0Þ
A  ð0Þ

A ¼ E
ð0Þ
A  ð0Þ

A ð13Þ

ðĤ
ð0Þ
A þ !Þ ð1;0;1Þ

A þ Q̂A;l� 
ð0Þ
A ¼ E

ð0Þ
A  ð1;0;1Þ

A þ E
ð1;0;1Þ
A  ð0Þ

A ð14Þ

ðĤ
ð0Þ
A � !Þ ð1;0;�1Þ

A þ Q̂A;l� 
ð0Þ
A ¼ E

ð0Þ
A  ð1;0;�1Þ

A þ E
ð1;0;�1Þ
A  ð0Þ

A ð15Þ

ðĤ
ð0Þ
A þ !Þ ð0;1;1Þ

A þ Q̂A;l0�0 
ð0Þ
A ¼ E

ð0Þ
A  ð0;1;1Þ

A þ E
ð0;1;1Þ
A  ð0Þ

A ð16Þ

ðĤ
ð0Þ
A � !Þ ð0;1;�1Þ

A þ Q̂A;l0�0 
ð0Þ
A ¼ E

ð0Þ
A  ð0;1;�1Þ

A þ E
ð0;1;�1Þ
A  ð0Þ

A ð17Þ

Ĥ
ð0Þ
A  ð1;1;0Þ

A þ Q̂A;l�ð 
ð0;1;1Þ
A þ  ð0;1;�1Þ

A Þ þ Q̂A;l0�0 ð 
ð1;0;1Þ
A þ  ð1;0;�1Þ

A Þ

¼ E
ð0Þ
A  ð1;1;0Þ

A þ E
ð1;0;1Þ
A  ð0;1;�1Þ

A þ E
ð1;0;�1Þ
A  ð0;1;1Þ

A

þ E
ð0;1;1Þ
A  ð1;0;�1Þ

A þ E
ð0;1;�1Þ
A  ð1;0;1Þ

A þ E
ð1;1;0Þ
A  ð0Þ

A ð18Þ
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Using the intermediate normalization convention, multiplying both sides of

equation (18) by  ð0Þ
A , and integrating both sides gives

E
ð1;1;0Þ
A ¼  ð0Þ

A Q̂A;l�

��� ��� ð0;1;1Þ
A þ  ð0;1;�1Þ

A

D E
þ  ð0Þ

A Q̂A;l0�0

��� ��� ð1;0;1Þ
A þ  ð1;0;�1Þ

A

D E
: ð19Þ

The first-order perturbed wave function can be expanded using electronically excited

states of molecule A:

 ð1;0;1Þ
A ¼

X
a>0

c
a;ð1;0;1Þ
A  a

A, ð20Þ

where the coefficient c
a;ð1;0;1Þ
A is complex, and intermediate normalization means that the

ground state is not included in the expansion. Inserting equation (20) into equation (14),

multiplying both sides by  a
A, and integrating both sides gives

 a
A Q̂A;l�

��� ��� ð0Þ
A

D E
þ c

a;ð1;0;1Þ
A ðEa

A þ !Þ ¼ c
a;ð1;0;1Þ
A E

ð0Þ
A : ð21Þ

Substituting the resulting expression for c
a;ð1;0;1Þ
A into equation (20) gives

 ð1;0;1Þ
A ¼ �

X
a>0

 a
A  

a
A Q̂A;l�

��� ��� ð0Þ
A

D E.
Ea
A � E

ð0Þ
A þ !

� �
: ð22Þ

Similar expressions are found for  ð1;0;�1Þ
A ,  ð0;1;1Þ

A and  ð0;1;�1Þ
A . When these

are substituted into equation (19), the resulting expression for E
ð1;1;0Þ
A is twice the

frequency-dependent polarizability �Al�, l0�0 ð!Þ defined in equation (7).
Calculation of frequency-dependent polarizabilities by this method can be implemen-

ted in practical electronic structure calculations (where the Schrödinger equation
cannot be solved exactly) by using the operator ĤA � i ddt in place of Ĥ

ð0Þ
A in the

appropriate energy expression, and expanding the energy in powers of l, � and ei!t.
As shown above, the time-independent coefficient multiplying l� in the expansion
of the energy is twice the required frequency-dependent polarizability. If this is
done using Hartree–Fock theory, the resulting polarizabilities are time-dependent
coupled Hartree–Fock (TD-CHF) polarizabilities [17]. Time-dependent second-order
Moller–Plesset (TD-MP2) polarizabilities can also be calculated, and a full theoretical
description has been given by Hättig and Hess [18].

Recently, time-dependent coupled-cluster (TD-CCSD) polarizabilities have been
implemented for open-shell, spin-unrestricted molecules [19]. The energy
equation for the TD-CCSD method is based on the Lagrangian formulation [20]
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of the CCSD equations. The TD-CCSD Lagrangian is

EA ¼ �ð0ÞA �̂Ae
�T̂AðtÞe��̂AðtÞ Ĥ

ð0Þ
A � i

d

dt
þ Q̂AðtÞ

� �
e�̂AðtÞeT̂AðtÞ

����
�����ð0ÞA

	 


þ �ð0ÞA �̂A, e
��̂AðtÞ Ĥ

ð0Þ
A � i

d

dt
þ Q̂AðtÞ

� �
e�̂AðtÞ

� �����
�����ð0ÞA

	 

ð23Þ

where �̂A and �̂A are de-excitation operators, and their amplitudes are Lagrange multi-
pliers, which are introduced to enforce the usual conditions for the CCSD amplitudes,

T, and for the TD-CHF orbital rotation operators, �̂, respectively. The operator T̂A is a

sum of single and double excitations, multiplied by CCSD amplitudes; �̂A � 1 is a sum

of single and double de-excitations, multiplied by l coefficients; �ð0ÞA is the unperturbed
Hartree–Fock wave function, and the orbital rotation operators �̂A are fixed at their

TD-CHF values.
Using the stationary properties of this Lagrangian, the required second-order energy

can be expressed in a form which contains terms up to first order in amplitudes and
orbital rotations, and zero-order Lagrange multipliers:

E
ð2Þ
A ¼ �ð0ÞA �̂

ð0Þ
A e�T̂

ð0Þ
A
1

2
Ĥ

ð0Þ
A � i

d

dt
, T̂

ð1Þ
A

� �
, T̂

ð1Þ
A

� �
eT̂

ð0Þ
A

����
�����ð0ÞA

	 


þ �ð0ÞA �̂
ð0Þ
A e�T̂

ð0Þ
A Ĥ

ð0Þ
A � i

d

dt
, �̂ð1ÞA

� �
, T̂

ð1Þ
A

� �
eT̂

ð0Þ
A

����
�����ð0ÞA

	 


þ �ð0ÞA �̂
ð0Þ
A e�T̂

ð0Þ
A
1

2
Ĥ

ð0Þ
A � i

d

dt
, �̂ð1ÞA

� �
, �̂ð1ÞA

� �
eT̂

ð0Þ
A

����
�����ð0ÞA

	 


þ �ð0ÞA �̂
ð0Þ
A e�T̂

ð0Þ
A Q̂A, T̂

ð1Þ
A þ �̂ð1ÞA

h i
eT̂

ð0Þ
A

��� ����ð0ÞA

D E

þ �ð0ÞA �̂ð0ÞA ,
1

2
Ĥ

ð0Þ
A � i

d

dt
, �̂ð1ÞA

� �
, �̂ð1ÞA

� �� �����
�����ð0ÞA

	 


þ �ð0ÞA �̂ð0ÞA , Q̂A, �̂
ð1Þ
A

h ih i��� ����ð0ÞA

D E
: ð24Þ

The zero-order quantities in this equation are evaluated [20] by performing a ground-
state CCSD calculation, giving T̂

ð0Þ
A , then solving the CCSD lambda equations to obtain

�̂
ð0Þ
A , and solving the CCSD zeta equations to obtain �̂ð0ÞA . The TD-CHF equations are

solved to obtain �̂ð1ÞA .
The calculation of the first-order amplitudes in T̂

ð1Þ
A usually dominates the overall

computational expense, as they require essentially a separate CCSD calculation for
each perturbation. Definitions of the first-order amplitudes are obtained by making
the second-order energy in equation (24) stationary with respect to all T̂

ð1Þ
A;X, where X
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includes all single and double excitations. The time-dependent first-order amplitudes
are expanded in powers of the perturbations,

T̂
ð1Þ
A;X ¼ �T̂ ð1, 0; 1Þ

A;X ei!t þ �T̂ ð1, 0;�1Þ
A;X e�i!t þ �T̂ ð0, 1; 1Þ

A;X ei!t þ �T̂ ð0, 1;�1Þ
A;X e�i!t, ð25Þ

and the time-independent second-order energy is made stationary with respect to
T̂

ð1, 0; 1Þ
A;X to obtain the first-order amplitude equation for T̂

ð0, 1;�1Þ
A , and similarly for

the other first-order amplitudes. The required integrals can then be written in terms
of quantities which appear in the time-independent CCSD perturbation theory:
residuals of the amplitude equations

�ð0ÞA X̂
y
Ae

�T̂AĤAe
T̂A

��� ����ð0ÞA

D E
, ð26Þ

residuals of the lambda equations

�ð0ÞA �̂
ð0Þ
A e�T̂A ĤA, X̂A

h i
eT̂A

��� ����ð0ÞA

D E
, ð27Þ

and the one-particle and two-particle densities

�ð0ÞA �̂
ð0Þ
A e�T̂A X̂A þ X̂

y
A

� �
eT̂A

��� ����ð0ÞA

D E
: ð28Þ

The cluster operator eT̂A in these quantities appears at zero order, eT̂
ð0Þ
A , and first order,

T̂
ð1Þ
A eT̂

ð0Þ
A . The operator ĤA similarly appears as a zero-order Hamiltonian, Ĥ

ð0Þ
A , and as

an effective first-order Hamiltonian, ½Ĥ
ð0Þ
A , �̂ð1ÞA �. The imaginary part of the effective first-

order Hamiltonian is anti-Hermitian, so some care is needed in ordering the indices
of the one-electron and two-electron integrals produced from it. As defined, the
two-particle density and the effective first-order Hamiltonian both contain components
with four virtual orbital indices, which would require a large amount of computer
storage, but in practice all contributions of these components to the polarizability
can be rewritten so that they do not require explicit calculation of the all-virtual
quantities, by reordering the summation over indices.

2.2. Results

The use of the TD-CCSD method to calculate dispersion energy coefficients for the
water–oxygen interaction is described in section 4. To justify the use of this method,
it is demonstrated here that the TD-CCSD results for these molecules are in agreement
with the best literature values.

To calculate induction and dispersion energies, polarizabilities and dispersion energy
coefficients, the basis set needs to be able to describe polarization of the ground-state
wavefunction, as discussed above. However, the polarization functions included in
most standard basis sets optimize the intramolecular correlation, and are not diffuse
enough to give converged dispersion energy coefficients Cn, especially for large n,
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unless very extensive basis sets are used. Therefore, the SP series of basis sets has been
devised [9, 21]. The SPQZ basis set for atoms B-Ar is obtained from the aug-cc-pVQZ
basis set [22] by changing the exponents of the three f Gaussians to equal the exponents
of the three most diffuse d Gaussians, and changing the exponents of the two g
Gaussians to equal the exponents of the two most diffuse d Gaussians. Similarly, the
SPTZ basis set is defined by changing the exponents of the two most diffuse f
Gaussians to equal the exponents of the two most diffuse d Gaussians. For the H
and He atoms, the d and f Gaussian exponents are changed so that they equal the
most diffuse p Gaussian exponents.

In figure 1, the spherically averaged, imaginary-frequency-dependent dipole polariz-
ability of the oxygen molecule is shown. The results were calculated using the SPQZ
basis set, with unrestricted electron spins [19]. The agreement with the benchmark
literature results, which were obtained from scaled dipole oscillator strength distribu-
tions (DOSD) [23], is excellent. Other methods based on Hartree–Fock theory and
MP2 theory do not agree with the literature values for small frequencies, and the
TD-UMP2 method is surprisingly poor. Similarly, the TD-CCSD method is found to
give frequency-dependent polarizabilities for water in very good agreement with the
DOSD results, as shown in figure 2.

Spherically averaged C6 and C8 dispersion energy coefficients for the dimers invol-
ving water and oxygen are shown in table 1. These were calculated from the dipole
polarizabilities shown in figures 1 and 2, and from the analogous quadrupole polariz-
abilities. As expected from the good agreement with the experimental polarizabilities,

Figure 1. Calculated values of the imaginary-frequency-dependent dipole polarizability of the oxygen
molecule (symbols), compared with benchmark experimental literature values (solid curve), in atomic units.
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the TD-CCSD method gives excellent C6 dispersion energy coefficients for all three
dimers. The other methods overestimate C6 for one homomolecular pair and underes-
timate it for the other, so the C6 results for the water–oxygen dimer, which are close to
the geometric mean of the other two, are in fair agreement with the experimental value,
but are still not as close to it as the TD-CCSD result. Interestingly, the differences in C8

values do not even qualitatively resemble the differences in C6 values between the dif-
ferent methods. The TD-CCSD results are expected to be the most accurate, but
there are no reliable literature data for C8 to test this.

Figure 2. Calculated values of the imaginary-frequency-dependent dipole polarizability of the
water molecule (symbols), compared with benchmark experimental literature values (solid curve),
in atomic units.

Table 1. Spherically averaged dispersion energy coefficients (in atomic units), calculated using the
TD-UHF, TD-CHF, TD-MP2 and TD-CCSD methods with the SPQZ basis set and with unrestricted
electron spins. Literature values are taken from constrained dipole oscillator strength distributions.

TD-UHF TD-CHF TD-MP2 TD-CCSD Literature

O2-O2 C6 71.9 62.9 57.4 61.2 61.6 [23]
C8 1692 1742 1762 1813

H2O-H2O C6 42.3 40.8 48.0 45.6 45.3 [23]
C8 895 1016 1261 1174

H2O-O2 C6 55.1 50.6 52.2 52.7 52.7 [23]
C8 1232 1331 1487 1458
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2.3. Energy shift method

The aim of the energy shift method is to calculate the ‘polarizability-like’ quantity ~�ð!Þ,
which is defined using a sum over excited states as

~�Al�, l0�0 ð!Þ ¼ 2
X
a

 ð0Þ
A Q̂A;l�

��� ��� a
A

D E
 a
A Q̂A;l0�0

��� ��� ð0Þ
A

D E.
Ea
A � E

ð0Þ
A þ !

� �
: ð29Þ

The frequency-dependent polarizability is then given by �ð!Þ ¼ ~�ð!Þ=2þ ~�ð�!Þ=2, and
for imaginary frequencies �ði!Þ ¼ <½ ��ði!Þ�. However, to obtain polarizabilities at ima-
ginary frequencies using the energy shift method, instead of calculating the quantity
~�ði!Þ, it is more efficient to calculate ~�ð!Þ for real, positive values of !, and to fit the
results to a set of pseudostates, which can then be inserted into equation (7) to
find the frequency-dependent polarizabilities. Using positive values of the energy shift
parameter ! avoids singularities in the polarizability, and using real values of !
allows only real-valued quantities to be used in the calculation of ~�ð!Þ, which increases
the computational efficiency of the method compared to time-dependent perturbation
theory.

The quantity ~�Að!Þ can be regarded as the static polarizability of a molecule identical
to A, whose ground-state energy is shifted from E

ð0Þ
A to E

ð0Þ
A � !. This shift of the

ground-state energy can be reproduced by replacing the unperturbed Hamiltonian
Ĥ

ð0Þ
A by Ĥ

ð0Þ
A � j ð0Þ

A i!h ð0Þ
A j: The projection operator (which should not be regarded

as a perturbation) shifts the ground-state energy, but not the excited-state energies,
and it does not affect the ground-state or excited-state wave functions. The perturbed
Hamiltonian is

Ĥ0
A ¼ Ĥ

ð0Þ
A �  ð0Þ

A

��� E
!
D
 ð0Þ
A

���þ �Q̂A;l� þ �Q̂A;l0�0 ð30Þ

and ~�Al�, l0�0 ð!Þ is equal to the coefficient of l� in the resulting second-order energy
expression.

The energy shift method is straightforward to apply to variational electronic structure
calculations, such as Hartree–Fock and configuration interaction (CI), and it can also
be applied to the non-variational MP2 and CCSD methods, using techniques similar to
those used for calculating frequency-dependent polarizabilities.

The main advantages of the energy shift method are simplicity (it does not use
time-dependent or anti-Hermitian operators) and speed (it does not involve com-
plex numbers). A further advantage could be gained if use of the method with
‘relaxed’ orbitals avoided the TD-CHF poles that cause problems for time-depen-
dent perturbation theory calculations of real-frequency-dependent polarizabilities.
The method has not been rigorously tested using high-level electronic structure cal-
culations, such as CCSD, with large basis sets, so its accuracy relative to the use of
time-dependent perturbation theory is not known, but further investigations may be
worthwhile.
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3. The water–nitrogen interaction

The complex formed by water and molecular nitrogen has been a focus of several

experimental and theoretical studies. Microwave spectroscopy of the H2O–N2 dimer

[24] suggests that there are four equivalent hydrogen-bonded structures, each having

a nearly linear N–N–H–O geometry with an N–H distance of 2.42 Å and an OHN

angle of 169�. A semi-empirical potential of the complex of water with N2 was proposed

by Sandler et al. [25]. This work included calculations of the potential energy surface at

the MP2 level of theory, analysis of different contributions to the interaction energy

(exchange-repulsion, electrostatic, dispersion and induction), and the construction

of a H2O–N2 potential function by fitting to ab initio data, followed by adjustment

against experimental rotational constants and quadrupole coupling constants [24].

The minimum was predicted to have a well depth of 437 cm�1.
Our study of the water–nitrogen interaction focussed on the thermodynamic proper-

ties of the mixture, for which a complete five-dimensional potential energy surface is
needed. Second virial coefficients at low temperatures are sensitive to the potential
well, while at higher temperatures they depend on the average of the potential over a
wide range of intermolecular angles and distances. The SIMPER method was used to
calculate the intermolecular potential, because the MP2 method gives inaccurate disper-
sion energy coefficients and is therefore likely to overestimate the depth of the potential
energy. Adjusting the MP2 potential to reproduce the microwave data, as done by
Sandler et al., improves the description of the potential around the minimum,
but does not necessarily improve the orientation-averaged potential energy, which
includes contributions from geometries far from equilibrium that are not sampled
by the microwave experiment.

3.1. Methodology

The SIMPER method was used to obtain an intermolecular potential energy surface

describing the interaction of rigid water and nitrogen molecules. The calculations

used the SP series of basis sets described in section 2, in order to improve the conver-

gence of the dispersion and induction energy to the basis set. The interaction energy

was calculated for 12 288 intermolecular geometries, consisting of 12 intermolecular

separations from 5 to 13 a0, and 1024 relative orientations.
The intermolecular potential was first evaluated using counterpoise-corrected MP2

supermolecule calculations. For comparison, the intermolecular potential was also
evaluated at the CCSD(T) supermolecule level of theory in the region of the
global minimum; these calculations took several days per point using the SPQZ basis
set. The SIMPER method was applied to the MP2 potential energy surface, using
a modified version of equation (1)

ESIMPER ¼ EMP2 �
X
k

E
ðkÞ
MP2

 !
ðS�, high=S�,MP2Þ þ

X
k

E
ðkÞ
high, ð31Þ
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and the sums over orders of perturbation k were truncated at k¼ 2. The first-order
energy, Eð1Þ, is the classical electrostatic interaction between unperturbed monomer
charge densities, and at ‘high’ level this was calculated from CCSD charge densities.
The second-order energy is a sum of induction and dispersion energies. At ‘high’
level, the induction energy was calculated as the sum of the MP2 response of N2 to
the electrostatic potential produced by the CCSD density of H2O, plus the MP2
response of H2O to the electrostatic potential produced by the CCSD density of N2.
This was the most time-consuming part of the SIMPER method, as it essentially
required two monomer MP2 calculations, one for each molecule in the CCSD potential
of the other, at each point on the potential energy surface. However, these calculations
took less time than the MP2 supermolecule calculations on the dimer at each point, so
the SIMPER method did not add greatly to the overall computational cost. The ‘high-
level’ dispersion energy was calculated as described in section 1, by combining MP2
damping functions with high-level dispersion energy coefficients. The high-level disper-
sion energy coefficients were calculated using ‘energy shifted’ CISD theory, as outlined
in section 2.3. The spherically averaged C6 value was 59.8 atomic units, compared to
64.3 for the MP2 supermolecule method and 57.6 obtained using DOSD results from
the literature [23].

The quantity ðEMP2 �
P

k E
ðkÞ
MP2Þ in equation (31) is approximately equal to the

exchange-repulsion energy, although it also contains higher-order ‘Coulomb’ perturba-
tion contributions from RSPT. It would not be helpful to treat high orders of Coulomb
and exchange energies separately, since the total Coulomb energy to infinite order is
unphysically large and negative [26], the exchange energy is unphysically large and posi-
tive, and the two almost cancel each other. We investigated truncating k at 3 instead of
2, but the results were similar, and not demonstrably better, so the computationally
cheaper truncation at k¼ 2 was preferred.

The exchange-repulsion energy is an important component of the intermolecular
potential, and is difficult to calculate explicitly at a high level of correlation. Within
SIMPER the overlap model [27, 28] is used to relate the low-level exchange-repulsion
energy to the electron density overlap S�,MP2ðR,�Þ

Eexch,MP2ðR,�Þ ¼ KMP2ðR,�Þ � S�,MP2ðR,�Þ, ð32Þ

where Eexch,MP2 is defined to be ðEMP2 �
P

k E
ðkÞ
MP2Þ and KMP2ðR,�Þ is a function of the

intermolecular coordinates, which is found from equation (32) at each point on the sur-
face. The value of K is assumed to be the same for the high-level exchange-repulsion
energy as for the MP2 exchange-repulsion, so the high-level exchange-repulsion
energy is calculated as

Eexch, highðR,�Þ ¼ KMP2ðR,�Þ � S�, highðR,�Þ: ð33Þ

The ‘high-level’ charge density overlap integral was calculated from CCSD electron
densities. Combining equation (32) and equation (33) produces the factor of
ðS�, high=S�,MP2Þ used to obtain the ‘high-level’ exchange-repulsion energy from the
MP2 exchange-repulsion energy in equation (31).
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To estimate the intermolecular potential in the complete basis set limit, the two-point
extrapolation formula of Bak et al. [29] was applied to the intermolecular potentials
obtained from the SPTZ and SPQZ basis sets:

Ex�1,x ¼
x3Ex � ðx� 1Þ3Ex�1

x3 � ðx� 1Þ3
, ð34Þ

where x is the cardinality of the basis set (here x¼ 4). The effect of basis set extrapola-
tion was generally to shift the potential energy toward more negative values, although
the difference between the SPQZ basis set and the estimated complete basis set limit was
small compared to the difference between the supermolecule and SIMPER methods.
Extrapolating from the SPQZ basis set to the complete basis set limit increased the
well depth by no more than 2%.

The SIMPER potential energy surface, extrapolated to the complete basis set limit,
was fitted to an expansion in atom-centred form, with centres on the hydrogen atoms
and oxygen atom of the water molecule, and on both nitrogen atoms. A correct descrip-
tion of the long-range interaction energy is important for calculating the second
virial coefficients. In order to ensure a proper asymptotic behaviour of the potential,
a switching function

FðRÞ ¼ f1þ tanh½6ðR=a0Þ � 78�g=2 ð35Þ

was used to change from the fitted potential to a long-range multipole expansion
of the potential at around R¼ 13 a0. Thus, the final functional form used for the inter-
molecular potential was

EðR,�Þ ¼ FðRÞEmultðR,�Þ þ ð1� FðRÞÞEfitðR,�Þ: ð36Þ

3.2. Results

A contour diagram of the fitted potential energy surface is shown in figure 3. The figure
shows planar geometries of the water–nitrogen complex. The centre of the nitrogen
molecule is placed at the spherical polar coordinates ðR, 	, 0Þ, and the water molecule
is in the xz plane, with the O atom at the origin; the z axis points from the midpoint
of the H nuclei towards the O nucleus. The orientation of the nitrogen molecule is
given by the spherical polar angles ð	0, 0Þ. The intermolecular potential was minimized
with respect to intermolecular separation R, and the resulting energy is shown in the
figure. The figure shows a single, symmetry-distinct, planar minimum, and it can be
seen that ‘geared’ rotation of the two molecules is a much more facile motion than
rotating both molecules in the same direction from the equilibrium geometry.

A few geometries of the water–nitrogen dimer were chosen for further study [9], using
CCSD(T) supermolecule calculations as a benchmark. The minimum energy was found
at a ‘hydrogen-bonded’ structure with 	 � 	0 � 110�. The well depth of the fitted
SIMPER potential was approximately 440 cm�1. This entirely ab initio value agrees clo-
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sely with the well depth of 437 cm�1 for the potential of Sandler et al. [25], which was
fitted to experimental data. A repulsive C2v geometry with 	 ¼ 	0 ¼ 0, where the oxygen
atom of water contacts one end of the nitrogen molecule, was also considered, together
with several points for intermediate values of 	 ¼ 	0. In all cases, close agreement
between the SIMPER and CCSD(T) methods was found. For example, near the
potential minimum, at R¼ 7.3 a0, 	 ¼ 	0 ¼ 120�, the MP2, CCSD(T) and SIMPER
methods gave interaction energies of �433, �415 and �412 cm�1 respectively. In
a repulsive geometry with R¼ 12 a0, 	 ¼ 	0 ¼ 0, the results were 20.7, 18.6 and
18.8 cm�1. The results demonstrate that the SIMPER method correctly reduces the
well depth of the potential, relative to MP2, and that the use of high-level components
from perturbation theory gives the correct long-range behaviour.

Table 2 shows the components of the MP2 and SIMPER potentials at two planar
geometries, one close to the global minimum (‘H’) at 	 ¼ 	0 ¼ 120�, and the other
(‘O’) at 	¼ 0, 	0 ¼ 90�, where the oxygen atom is equidistant from the N atoms.
At both orientations the first-order (electrostatic) energy is a major attractive compo-
nent of the potential energy. The interaction between the dipole moment of water
and the quadrupole moment of nitrogen qualitatively determines the sign of the electro-
static energy, but higher multipoles and non-multipolar charge overlap effects also have

Figure 3. Contour plot of the fitted water–nitrogen potential energy surface, calculating using SIMPER
and extrapolated to the complete basis set limit. The distance-optimized energy is shown for every planar
orientation, where 	 is the polar angle defining the centre of the nitrogen molecule, and 	0 defines its
orientation, as described in the text. The top and bottom of the figure are identical, by symmetry. Black
regions of the plot are repulsive orientations. Contours are drawn every 20 cm�1. The geometry of the
complex is drawn to scale at several positions on the plot, and the global minimum appears just to the
right of centre.
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an important effect. The dispersion energy is less negative for the SIMPER potential
than for the supermolecule MP2 potential, which results partly from the difference in
the C6 coefficients. The MP2 multipoles are larger than the CCSD multipoles, and
the MP2 method therefore overestimates the magnitude of the electrostatic energy rela-
tive to the calculation based on CCSD densities. The MP2 density is also more spatially
extended than the CCSD density, which produces a larger electron density overlap, so
the MP2 exchange-repulsion energy is larger than the SIMPER exchange-repulsion
energy. Overall, the changes in the dispersion and electrostatic energy outweigh the
change in the exchange-repulsion, so the SIMPER potential is shallower than the
MP2 potential.

The second virial coefficient B12 for the water–nitrogen pair was calculated from the
SIMPER potential as a function of temperature, including translational and rotational
quantum effects to first order, as described in [30]. The results are shown in figure 4.

Table 2. Components of the water–nitrogen intermolecular potential (cm�1) in the vicinity of the hydrogen-
bonded global minimum (H), and in a C2v geometry (O) defined in the text. Results were obtained with the

SPQZ basis set, and the total potential was distance-optimized.

Geom Level Electrostatic Induction Dispersion Exch-Rep Total

H MP2 �550.7 �190.2 �374.4 688.3 �427.0
H SIMPER �517.8 �190.8 �351.9 650.8 �409.7

O MP2 �367.9 �98.9 �411.8 629.1 �249.5
O SIMPER �335.7 �99.1 �374.4 601.3 �207.9

Figure 4. Calculated water–nitrogen mixed second virial coefficients (curve) and experimental data with
quoted uncertainties in the virial coefficients (error bars). The calculations and experimental data sources
are described in the text.
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Experimental water–nitrogen data from a number of different sources [31–39] have been
collated and analysed to produce experimental second virial coefficients [9, 40–42].
These are also shown in the figure. The experimental data are clearly inconsistent
within their mutual uncertainties. However, the SIMPER calculations are consistent
with the majority of sources. The theoretical results cover temperatures from 100K
and 3000K. The lower temperature of 100K is estimated to be the maximum tempera-
ture at which higher quantum corrections may become important, and second virial
coefficients at temperatures much higher than 3000K will be significantly affected
by thermal excitation of molecular vibrations, especially the water bending mode,
and by points high on the repulsive wall that may not be represented well by the
fitted potential. Nevertheless, the theoretical work provides values of B12 under
extreme temperatures where no experimental data exist, and the uncertainty in the
calculations is estimated to be less than, or similar to, the uncertainty in the best
experimental data.

In conclusion, the SIMPER method, which scales as the fifth power of system size
per point on the surface (plus a single sixth-power scaling CCSD calculation per
monomer), gives a water–nitrogen potential energy surface in excellent agreement
with the seventh-power scaling supermolecule CCSD(T) method, while the supermole-
cule MP2 method, which requires a similar computational effort to SIMPER, overesti-
mates the magnitude of the potential well depth. Second virial coefficients calculated
using the SIMPER method are more reliable than the experimental data, and cover a
larger temperature range, so they will be useful for calculating the thermodynamic
properties of humid gases in a number of applications, including humidity standards
and combustion gases.

4. The water–oxygen interaction

The weak interaction between water and oxygen molecules is important in chemistry

and biochemistry, in combustion processes, and in understanding the properties of
humid air for metrology. The absorption of light by oxygen gas is affected by collisions

between oxygen and water molecules, and this may have a significant effect on trans-
mission of light through the Earth’s atmosphere, influencing the climate [43, 44]. To cal-

culate the second virial coefficient of the water–oxygen mixture, a potential energy

surface is needed which covers all intermolecular orientations and a range of intermo-
lecular distances from the low repulsive wall out to the long-range asymptotic limit,

as was the case for the water–nitrogen interaction.
There appears to be no definitive experimental measurement of the equilibrium

structure of the water–oxygen dimer, and early theoretical studies of the water–
oxygen dimer [45] did not consider the planar, van der Waals bonded intermolecular
geometry that is now believed to be the potential minimum [46–48]. This was first
suggested in 2002 by Kjaergaard and co-workers [49], who used QCISD calculations.
However, several different equilibrium geometries were proposed in the following
three years, including an out-of-plane geometry [50] and hydrogen-bonded geome-
tries [51, 52].
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4.1. Methodology

Our calculations of the water–oxygen potential energy surface [53] considered several
different theoretical methods employing both restricted (R) and unrestricted (U) elec-
tron spins: the supermolecule methods RMP2, UMP2, RCCSD, UCCSD,
RCCSD(T), and the SIMPER method with unrestricted spins. The SIMPER method
has not yet been implemented with restricted spins for open-shell molecules, and
UCCSD(T) calculations proved rather troublesome, although some (unpublished)
results were eventually obtained, with a triple-zeta basis set, which were in close agree-
ment with the RCCSD(T) calculations.

The length of computer time required for CCSD(T) calculations (eight hours per
point for the SPTZ basis set) made this method impractical for obtaining a complete
potential energy surface, and the RMP2, RCCSD and UCCSD supermolecule methods
were not in good agreement with the RCCSD(T) results, so the water–oxygen intermo-
lecular potential energy surface was calculated using the supermolecule UMP2 method,
and using SIMPER calculations based on the UMP2 results. In the unrestricted-
spin calculations, the expectation value of the total spin quantum number S2 was
2:048� 0:001 for the oxygen monomer and for the water–oxygen dimer, so spin
contamination of the wave function was small.

The intramolecular water and oxygen geometries were fixed at their ground-state
expectation values, and a set of 465 orientations was chosen for the calculation. Ten
different water–oxygen distances R between 4.5 a0 and 10 a0 were used in the calcula-
tions, so the final potential energy surface was calculated at 4650 separate points.
The calculations used the SPTZ and SPQZ basis sets described in section 2, with extra-
polation to the complete basis set limit [54].

The SIMPER method was applied as described for water–nitrogen in section 3.1,
with some small modifications. The first-order electrostatic interaction energy was

recalculated in the usual way: the UMP2 electrostatic energy was removed from the

supermolecule energy and replaced by the electrostatic interaction energy between

monomer UCCSD charge densities. The UMP2 ‘exchange-repulsion’ energy was

defined in the same way as for water–nitrogen, as the difference between the UMP2

supermolecule energy and the RSPT perturbative energy to second order, and it was

multiplied by the ratio of the UCCSD to UMP2 values of the electron density overlap

integral S� to give the SIMPER exchange-repulsion energy. The UMP2 second-order

dispersion energy was expressed as a sum of damped multipole terms CnfnðbRÞR
�n,

using the UMP2 dispersion energy coefficients n � 6, multiplied by damping functions

with the damping length scale parameter b calculated at each point on the surface

from the UMP2 dispersion energy and the supermolecule UMP2 dispersion energy

coefficients. To obtain the SIMPER dispersion energy, the UMP2 dispersion energy

coefficients were replaced by time-dependent coupled-cluster (TD-UCCSD) dispersion

energy coefficients [19], and the damping length scale parameter was multiplied by the

ratio of the TD-UCCSD to supermolecule UMP2 values of the quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C6=C8

p
at the

same orientation. It was shown in section 2 that the spherically averaged C6 value from

TD-UCCSD calculations (52.7 atomic units) is in close agreement with the best

literature value, and improves on the supermolecule UMP2 value of C6, which is the

TD-UHF result in table 1 (55.1 atomic units).
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Three methods for recalculating the second-order induction energy were investigated
in preliminary calculations. First, the UMP2 induction energy was used without mod-
ification as the SIMPER induction energy. Second, the same method was used as for
water–nitrogen: the CCSD density of water was used to calculate the potential for
the oxygen molecule, and the second-order energy response of oxygen to that potential
was calculated using UMP2 theory; and similarly for the polarization of water by
oxygen. Third, UCCSD polarizabilities and multipoles of both molecules were used
to calculate long-range Cn multipole coefficients for the second-order induction
energy, and these were used to replace the analogous supermolecule UMP2 quantities
in a damped multipole series, using the same damping functions as for the dispersion
energy. In practice, the induction energy was found to be relatively small at the poten-
tial energy minimum, and all three methods for modifying the induction energy gave
similar results. Therefore, in the calculation of the SIMPER potential energy surface,
the UMP2 induction energy was not modified. The total SIMPER interaction energy
was calculated as the sum of the UCCSD electrostatic energy, the UMP2 induction
energy, and the SIMPER dispersion and exchange-repulsion energies.

EintðSIMPERÞ ¼ EelecðUCCSDÞ þ EindðUMP2Þ þ EdispðSIMPERÞ

þ ErepðUMP2Þ
S�ðUCCSDÞ

S�ðUMP2Þ
: ð37Þ

4.2. Results

The equilibrium geometry of the water–oxygen dimer having lowest energy was found
to be planar in both the UMP2 and SIMPER calculations. In the equilibrium
‘O-bonded’ structure, the O2 molecule is located toward the oxygen end of the water
molecule, and oriented roughly parallel to the nearest OH bond. A planar
‘H-bonded’ local minimum was also found. The symmetry of the water and oxygen
molecules means that there are four equivalent versions of each equilibrium structure.

Table 3 shows the separate components of the energy (electrostatic, induction,
dispersion and exchange-repulsion). In the O-bonded geometry, the electrostatic and
dispersion energies both became less negative when the relevant MP2 quantities were
replaced by their CCSD counterparts. In the H-bonded geometry, the dispersion
energy became more negative, and this roughly cancelled the change in the electrostatic

Table 3. Components of the water–oxygen intermolecular potential (cm�1) near the global minimum (O),
and the hydrogen-bonded local minimum (H). Results were extrapolated to the complete basis set limit from

SPTZ and SPQZ calculations.

Geom Level Electrostatic Induction Dispersion Exch-Rep Total

O UMP2 �154 �49 �301 293 �211
O SIMPER �140 �49 �285 287 �187

H UMP2 �87 �95 �263 317 �128
H SIMPER �73 �95 �277 293 �152
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energy, but the largest effect was a reduction in exchange-repulsion energy, arising
from the reduced overlap of the CCSD ground-state electron densities relative to the
MP2 densities.

Supermolecule interaction energies were calculated for two geometries close to the
‘O-bonded’ and ‘H-bonded’ equilibrium structures, using different basis sets. As for
water–nitrogen, the change in the potential energy produced by enlarging the basis
set was found to be smaller than the difference between the supermolecule methods.
The binding energy changed by about 4% from SPTZ to SPQZ, and basis set extrapo-
lation increased the SPQZ binding energy by a further 2% or so. This contrasts with
a difference of 29% at the O-bonded minimum between the most negative interaction
energy (�200 cm�1, UMP2), and the least negative energy (�155 cm�1, UCCSD/
RCCSD) found with the SPTZ basis set. The RCCSD(T) and SIMPER interaction
energies were both less negative than the UMP2 energy: �192 and �180 cm�1 respec-
tively. For the H-bonded local minimum, there was an even larger percentage difference
between the most negative energy (�137 cm�1, SIMPER) and the least negative
(�86 cm�1, RCCSD), and the SIMPER binding energy was 11% more than the
RCCSD(T) binding energy (�123 cm�1).

To obtain a complete potential energy surface, the calculated points were fitted
using a function of the O!B and H!B vectors, where O is the oxygen atom of
water and B is the bond centre of the oxygen molecule. A contour diagram of the
fitted surface is shown in figure 5.

The mixed second virial coefficient B12 for the water–oxygen mixture was calculated
from the SIMPER potential energy surface extrapolated to the complete basis set limit.
The calculation was essentially the same as for water–nitrogen, and included transla-
tional and rotational quantum effects to first order; higher-order quantum effects
were expected to be negligible above 100K [30]. In figure 6 these calculated second
virial coefficients are compared with experimental measurements. Second virial coeffi-
cients obtained from the UMP2 potential energy surface, extrapolated to the complete
basis set limit, are shown for comparison.

The experimental B12 data for water–oxygen shown on the plot come from the study
of Wylie and Fisher [55], and these are the only such data for this mixture. The
SIMPER values for B12ðTÞ are systematically less negative than the experimental
data, although the uncertainties in the SIMPER potential were estimated [53] to be
large enough that the results cannot definitively be said to be inconsistent. On the
other hand, the calculations agree well with the values obtained indirectly from
water–air and water–nitrogen data by Hall and Iglesias-Silva [56]. This agreement is
consistent with recent work by Harvey and Huang [57], which shows that combining
the water–oxygen and water–nitrogen results reported in this review with
previous calculations for water–argon [58] produces excellent agreement with available
high-quality data for B(T) for water with air.

The UMP2 potential energy surface produces somewhat less negative virial
coefficients than SIMPER. Although the SIMPER virial coefficients are in better
agreement with the experimental data, the small amount of data, and the difficulty of
the experiments, mean that this is not definitive evidence in favour of the SIMPER
method. Since the RCCSD(T) and SIMPER calculations differ significantly, especially
near the H-bonded minimum, it was important to determine whether this overall
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deepening of the potential by the SIMPER procedure was realistic or just an artifact of
the method. To this end, 17 further intermolecular orientations were chosen, and
UMP2, RCCSD(T) and SIMPER calculations were performed at these orientations
with the SPTZ basis set, at intermolecular separations R¼ 5.5 a0, R¼ 6.5 a0, and
R¼ 7 a0. At R¼ 5.5 a0, the intermolecular potential averaged over all 17 points was
þ1245 (UMP2), þ1224 (RCCSD(T)) and þ1189 (SIMPER). At R¼ 6.5 a0, the average
was �14:3 (UMP2), �30:7 (RCCSD(T)), and �37:0 (SIMPER), and at R¼ 7 a0 it was
�83:6 (UMP2), �95:2 (RCCSD(T)) and �96:4 (SIMPER). The main difference
between the SIMPER and RCCSD(T) calculations for these 17 orientations was
found to be near to the H-bonded geometry. It is interesting to note that further
(unpublished) calculations have shown that the difference between the spherically
averaged UMP2 and SIMPER potentials arises almost entirely from the exchange-
repulsion energy.

Based on the comparison with RCCSD(T) calculations, the deepening of the
potential well by SIMPER appears to be qualitatively correct, and the deeper
H-bonded minimum predicted by the SIMPER method, relative to RCCSD(T), is
offset to some extent by the shallower O-bonded minimum. The spherically averaged
RCCSD(T) potential is significantly deeper than the UMP2 potential. It is not as

Figure 5. Contour plot of the fitted water–oxygen potential energy surface, calculating using SIMPER and
extrapolated to the complete basis set limit. See the caption to for details. Contours are drawn every 10 cm�1.
The global ‘O’ minimum is near the top and to the left of centre; the local ‘H’ minimum is near the top and to
the right of centre. The lowest-energy pathway between the two involves moving straight downwards on the
figure from the ‘H’ minimum, over the saddle point (which is about 19 cm�1 above the H minimum in
energy), to 	0 � 80�, then turning to descend the narrow valley (down and left), and finally jumping back
to the top of the diagram near the global ‘O’ minimum.
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deep as the SIMPER potential, but it is closer to the SIMPER potential than it is to the
UMP2 potential. It is noted that agreement with the limited experimental second virial
coefficient data [55] on the water/oxygen mixture would require an even deeper poten-
tial than the SIMPER potential. This seems unlikely, especially in light of the experi-
mental water–air data, but more calculations and/or measurements are required to be
certain that the experimental water–oxygen second virial coefficients are too low.

In summary, the water–oxygen complex shows more ‘van der Waals’ character than
the water–nitrogen complex: water–nitrogen is more strongly bound at the equilibrium
geometry, and its potential energy surface is more anisotropic, as a result of the larger
nitrogen quadrupole moment. Some water–nitrogen orientations are repulsive for all R,
which is not the case for water–oxygen. Furthermore, enlarging the basis set for water–
oxygen increases the binding energy for most of the geometries considered, including
all the geometries with R<8 a0; this is also typical of a van der Waals complex.

Second virial coefficients are affected by a large region of the potential energy
surface, so it is desirable to avoid methods that systematically under- or over-estimate
the interaction energy for most geometries. Based on the RCCSD(T) method as a
benchmark, SIMPER appears to suffer less from this problem than the supermolecule
UMP2 method, which seems to be overall too shallow for water–oxygen, and the super-
molecule CCSD methods, which significantly underestimate the binding energy.

The SIMPER method can be used for smaller basis sets, and no ‘counterpoise’
correction seems to be required. It was originally thought that this might be necessary
because the supermolecule energy is calculated in the dimer basis set, whereas the RSPT

Figure 6. Calculated water–oxygen mixed second virial coefficients (upper curve, MP2, lower curve,
SIMPER) and experimental data with quoted uncertainties in the virial coefficients (error bars).
The calculations and experimental data sources are described in the text.
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calculations and calculations of the dispersion energy coefficients are done in the mono-
mer basis sets. It is fortunate that this does not lead to a significant basis set error (such
as would be obtained by neglecting the counterpoise correction in a supermolecule
calculation), because calculating the dispersion energy coefficients in the dimer basis
set at every point would not be practicable. The SIMPER method also seems to be
reliable at short intermolecular separations, even though RSPT perturbation theory,
by itself, does not converge to a physically reasonable result. Scaling the ‘exchange-
repulsion’ energy in the SIMPER method also scales the higher-order RSPT terms
that are included in it, and this scaling is not justified, so the method can only
work if higher-order terms in the perturbation expansion (including their exchange
counterparts) are small, and/or the scaling factor is close to 1. This may not be true
for ion-molecule interactions or strong hydrogen bonds, for which third-order RSPT
may be needed.

5. Atomic polarizabilities and atomic dispersion energy coefficients

We now turn our attention to larger molecules, for which the SIMPER method,
as described in the first part of this review, cannot be applied. As the size of the
system increases, first the use of a damped intermolecular multipole series for the dis-
persion energy becomes unsuitable, then MP2 supermolecule calculations and RSPT
perturbative calculations become infeasible. For still larger molecules, accurate calcula-
tion of monomer properties using the CCSD method also becomes impossible. This
section considers the case of ‘medium-sized’ molecules, where MP2 supermolecule
calculations are still possible, but where the damped intermolecular multipole series
cannot be used.

There are two reasonable methods for calculating accurate dispersion energies for
interactions involving medium-sized molecules. One method involves calculating the
dispersion energy directly, without any multipole expansion, using a perturbative
method such as Symmetry-Adapted Perturbation Theory (SAPT) [59]. However,
direct calculation of the dispersion energy is computationally expensive, so the level
of electron correlation that can be used is lower than monomer TD-CCSD. The alter-
native is to expand the dispersion energy as a sum of atomic dispersion energies, using
damped multipole series between individual atoms a and b of the interacting molecules:

Edisp ¼ �
X
a, b

X
n¼6

Cn, ab fn, abðbRabÞR
�n
ab : ð38Þ

If a supermolecule MP2 calculation is possible, as we are assuming, then it must also be
possible to do the less time-consuming calculation of the second-order MP2 dispersion
energy Edisp. Then, if the MP2 atomic dispersion energy coefficients Cn, ab can also be
calculated, the MP2 atomic damping functions f can be obtained in an exactly analo-
gous way to the current SIMPER method: the damping functions are assumed to
have a universal functional form, and the quantity b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C8=C6

p
is assumed to be the

same for all atomic pairs, at each point on the surface. If the atomic dispersion
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energy coefficients can also be calculated using a higher level of electron correlation,
these higher-level dispersion energy coefficients can be used in equation (38), with the
same atomic damping functions, to give the SIMPER dispersion energy. The main
requirements for the SIMPER dispersion energy are, therefore, atomic
dispersion energy coefficients at MP2 supermolecule level and at a ‘high’ level of
electron correlation.

Atomic dispersion energy coefficients can be calculated from equation (8) using the
imaginary-frequency-dependent polarizabilities of the atoms in the interacting mole-
cules. Atomic polarizabilities are not physically measurable or uniquely definable prop-
erties, unlike the total polarizabilities of the molecules, but because they have a crucial
role to play in developing intermolecular potentials, a considerable amount of work has
been devoted to finding methods for defining and calculating them [60–65]. Our recent
work in this area is described here [66]. For simplicity, the rest of this section considers
atomic polarizabilities at zero frequency, �al�, l0�0 ð0Þ ¼ �al�, l0�0 , but the methodology and
discussion apply equally to frequency-dependent polarizabilities.

It is generally agreed that atomic polarizabilities should be symmetrical,
�al�, l0�0 ¼ �al0�0, l� , and that they should not include multipole components with l¼ 0 or
l0 ¼ 0, which would violate charge conservation. Non-local polarizabilities �a, a

0

00, 00,
which include charge flow between different atoms under the influence of an external
potential, can be defined and used in theory, but they give unwieldy expressions for
the dispersion energy which suffer from cancellation of large terms of opposite sign,
so they are not considered further here. If atomic polarizabilities are to be useful, com-
bining all the atomic polarizabilities of a molecule should reproduce the molecular
polarizabilities, and atomic polarizabilities should increase more slowly in magnitude
with increasing l, l0 than the molecular polarizabilities, so that the dispersion
(or induction) energy converges more quickly when it is expressed in terms of atomic
contributions. It is also desirable for atomic polarizabilities to be similar for atoms in
similar chemical environments, and to be correctly related by symmetry for symme-
try-equivalent atoms in a molecule. Physical intuition also suggests that the diagonal
polarizabilities with l� ¼ l0�0 should be positive, and that they should be larger for
larger, ‘softer’ atoms.

5.1. Methodology

Our method [66] for calculating atomic polarizabilities �a is based on the physical
definition of polarizability as the change in multipole Q per unit multipole component
of the external potential V,

�al�, l0�0 ¼ �
@Qa

l�

@Va
l0�0

 !
Va

l0�0
¼0

: ð39Þ

Given a method for calculating atomic multipoles Qa
l� , the atomic polarizabilities can be

calculated from this definition by placing the molecule in a series of external potentials,
and calculating the change in the atomic multipoles per unit applied potential Va

l0�0 at
the nucleus of atom a.
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For example, consider the diatomic molecule CO, with a bond length of 2.132 a0, and
let the z axis coincide with the molecular axis. When a constant electric field is applied
in the x direction, the atomic multipoles of the C and O atoms change. Using the
Hartree–Fock method with the aug-cc-pVDZ basis set, the first-order response of the
atomic x dipoles to the field is found using distributed multipole analysis (DMA) [67]
to be �7:48 on C and �3:50 on O. The atomic polarizabilities are therefore
�Cxx ¼ 7:48 and �Oxx ¼ 3:50.

However, when a constant electric field (V10 potential) is applied in the z direction,
parallel to the bond, the first-order response involves changes in the DMA charges
of the atoms as well as the dipoles. The charge of the C atom (which is located at nega-
tive z relative to the O atom) changes by 3.73 per unit applied field, and the charge
of the O atom changes by �3:73. This change in charge cannot be represented using
local atomic polarizabilities.

Assuming that local atomic polarizabilities exist, and that they can be interpreted as
the first-order change in atomic multipoles with respect to a local applied potential,
there is only one way to resolve this problem: the DMA method used to obtain the
atomic multipoles must be changed. This is done in a way which involves no change
in the field-free DMA, and by making the minimum changes necessary to the DMA
in the applied field to make the atomic polarizabilities local and symmetrical.

The response of the DMA atomic multipoles of the CO molecule to the field in the
z direction is therefore modified such that no change in atomic charges occurs. This
is done in a symmetrical fashion. Half of the ‘unwanted’ charge of 3.73 on the C
atom is re-expanded as a multipole series on the O atom, giving an additional charge
of 1.87, an additional z dipole of �3:98, and additional higher multipoles on O, and
reducing the charge on C by 1.87. Half of the ‘unwanted’ charge of �3:73 on the O
atom is similarly re-expanded about the C nucleus. The resulting change in charge is
now zero at each nucleus, as required, and the total change in dipole of the C atom
is the sum of the change in the atomic dipole per unit applied V10 potential, namely
�3:16, plus �3:98 obtained from re-expanding the oxygen charge, so the total atomic
polarizability is �Czz ¼ 7:14. Similarly, �Ozz ¼ 7:38.

The dipole–quadrupole polarizabilities of the atoms are also obtained from this
calculation. The quadrupole Q20 of the C atom changes by 6.63 per unit applied V10

potential, and re-expanding the oxygen charge at the C atom adds a further �8:48,
so the dipole–quadrupole polarizability is �C10, 20 ¼ �C20, 10 ¼ 1:85. Note that the atomic
polarizability is required to be symmetrical. A similar calculation for the oxygen
atom gives �O10, 20 ¼ �O20, 10 ¼ �9:84.

Next, a constant field gradient (V20 potential) is applied to the CO molecule. If the
origin is taken to be midway between the nuclei, this corresponds to applying the
same V20 potential to the two nuclei, plus a potential component VC

10 ¼ �2:132V20 at
the C nucleus, and VO

10 ¼ 2:132V20 at the O nucleus. The change in charge of the two
nuclei should be zero in response to the finite field, and the change in dipole of the
C atom should be given by ��C10, 20V

C
20 � �

C
10, 10V

C
10, that is, 13.36 per unit applied

field gradient, given the previously calculated values of the atomic polarizabilities
of C. In practice, the change in the charge of C is not zero, but �6:94 per unit
applied potential, so half of this is re-expanded about the O nucleus, and half of the
corresponding O charge polarization is re-expanded about C. The resulting change in
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dipole of the C atom is 9.83 (from the applied field gradient), plus 14.79 (from moving
the oxygen charge). This is 11.26 more than the required value of 13.36, and the change
in dipole of the O atom is similarly 11.26 less than its required value. These ‘unwanted’
dipoles are therefore re-expanded about the other nuclei: a dipole of 5.63 is removed
from C, producing an additional dipole and quadrupole on O, and a dipole of �5:63
is removed from O, producing an additional dipole and quadrupole on C. The total
change in quadrupole on the C atom, resulting from the applied field gradient, plus
the result of re-expanding the unwanted O charge, plus the result of re-expanding the
unwanted O dipole, is �45:95 atomic units. Of this, þ3:95 is the result of polarization
by the field VC

10 ¼ �2:132V20 at the C nucleus, using the previously calculated value of
�C10, 20, so the atomic quadrupole polarizability of C must be �C20, 20 ¼ 49:90. The atomic
quadrupole polarizability of O is similarly found to be �O20, 20 ¼ 49:11.

This method is continued to arbitrarily high multipole rank in the applied poten-
tial and the multipole response, and all the corresponding atomic polarizabilities
are obtained. For larger molecules, and molecules with lower symmetry, two addi-
tional points need to be considered. The first is that polarizabilities of the same
multipole rank obtained from the calculation are not necessarily symmetrical, for
example, �ax, z 6¼ �az, x. The solution to this is to force the values of �ax, z and �az, x
to equal the mean of the calculated values. Polarization of the atom in the x direc-
tion, in a field applied in the z direction, is then adjusted to agree with this mean
value, by moving the ‘unwanted’ part of the x dipole to other atoms, and similarly
with x $ z.

The second important consideration is that, in a molecule with more than two atoms,
the ‘unwanted’ multipoles on one atom can be divided between the other atoms in more
than one unique way. To choose a suitable method, we attempt to optimize the conver-
gence of the multipole series by re-expressing multipoles over atoms as near to the ori-
ginal atom as possible. This is related to (but not the same as) the localization procedure
introduced by Le Sueur and Stone [68], which was recently used by Misquitta and
Stone [64] to localize atomic polarizabilities obtained from a constrained electron
density fitting method.

For covalent molecules, where bonds between atoms are well defined, the ‘unwanted’
multipoles of an atom can be moved to other atoms bonded to it. If the molecule is
1-connected, that is, if there is only one way to reach any atom from any other by tra-
versing bonds without backtracking, the amount of unwanted multipole to move across
each bond in this way is unique. If the molecule contains rings, or is not connected
(for example, a hydrogen-bonded dimer, or a transition state in a chemical reaction)
then a more sophisticated method for redistributing the ‘unwanted’ multipoles is
needed. A method has been introduced [66] for molecules with rings by analogy with
the flow or diffusion of a substance towards equilibrium. A set of first-order ‘rate equa-
tions’ is used, in which the rate of transfer of a multipole across a bond is proportional
to the difference in unwanted multipoles between the two atoms. At large ‘times’, the
amount of unwanted multipole is reduced to zero for all the atoms. The total
amount of multipole moved across each bond is then obtained by integrating the solu-
tion of the rate equations over time.

If the bonds in a molecule are not well-defined, or, more generally, to produce a first-
principles method which does not rely on intuitive concepts such as chemical bonds,
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then the diffusion analogy can be extended to allow for different ‘rates of flow’ between
different pairs of atoms. Atoms that are closer together, and/or that share a larger
amount of charge density, have a larger rate of ‘flow’ of multipole between them.
This proposal, although apparently reasonable, has not yet been tested in practice, so
it is not considered further in this review.

5.2. Results

The atomic polarizability method was tested using coupled Hartree–Fock (CHF) calcu-
lations with an aug-cc-pVDZ basis set, and the systems chosen for study were carbon
dioxide, water, ethylene, acetylene, and the alkane series (CnH2nþ2, n ¼ 1� 6). Two
sets of atomic polarizabilities were calculated for the hydrocarbons: all-atom polarizabil-
ities, where each atom constitutes a separate region, and united-atom polarizabilities,
where each region is composed of a CHn group and is centred at the carbon nucleus.

The results for the isotropic and anisotropic atomic polarizabilities of CO, CO2, H2O,
C2H2, and C2H4 are presented in table 4. They are defined by

��1 ¼
1

3

X
�

�1�, 1�

��1 ¼
h
1

2
ðð�z, z � �x,xÞ

2
þ ð�z, z � �y, yÞ

2
þ ð�x, x � �y, yÞ

2
Þ þ 3 �2z, x þ �

2
z, y þ �

2
x, y

� �i1=2
��2 ¼

1

5

X
�

�2�, 2�: ð40Þ

Table 4. Atomic, united-atom and molecular polarizabilities, in atomic units.

��1 ��1 ��2

CO

C 7.37 �0.34 37.75
O 4.79 3.88 19.00
CO 12.15 3.54 86.17

CO2

C 3.97 3.48 13.11
O 5.53 4.21 15.66
CO2 15.02 11.90 118.06

H2O

O 5.69 0.96 17.67
H 1.14 1.79 1.78
H2O 7.97 1.34 27.43

C2H2

C 9.46 4.07 47.80
H 1.80 2.22 12.08
CH 11.26 6.28 64.31
C2H2 22.53 12.57 170.57

C2H4

C 7.54 6.10 42.68
H 3.10 4.09 16.78
CH2 13.74 6.66 98.72
C4H4 27.48 13.31 269.93
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Since ��1 equals j�z, z � �x, xj for the linear molecules CO, CO2 and C2H2, the more
informative (signed) quantity �z, z � �x, x is given in table 4 for these molecules; it is
positive in all cases except for the C atom of CO.

The results are in reasonable agreement with physical intuition. The diagonal polar-
izabilities are positive, the hydrogen atom has the smallest polarizability, and the
carbon atom usually has the largest polarizability, but in CO2, where the carbon
atom transfers some of its valence electron density to the electronegative oxygen
atoms, its polarizability is lower. It is encouraging that even for these small molecules,
the ratio ��2= ��1 is smaller for the individual atoms than it is for the molecules containing
them, which suggests that the convergence properties of the atomic multipole series will
be better than they are for the molecular series.

Very promising results were also obtained for the alkane series. For the largest mole-
cule considered, n-C6H14, the atomic dipole polarizabilities varied from 3.75 to 5.23 for
C and from 3.05 to 3.34 for H. These values are in reasonable agreement with the atomic
dipole polarizabilities obtained by Ferraro et al. [60] and byWilliams and Stone [69]. The
largest quadrupole polarizability for any atom was 23.37 atomic units, compared to 3537
atomic units for the entire molecule. However, the quadrupole polarizabilities of two
carbon atoms (related by symmetry, at positions 2 and 5 in the chain) were negative.

In order to test the usefulness of the atomic polarizabilities in practical applications,
point to point induction energies were calculated using the atomic polarizabilities and
compared with CHF calculations. The point to point induction energy is defined as
the second-order change in energy when two non-polarizable point charges are located
near the molecule. The ab initio CHF induction energies were computed using 12 500
randomly selected points from the van der Waals envelope for each molecule, and
the deviations between these and the corresponding energies obtained from atomic
polarizabilities were calculated for pairs of these points. The maximum multipole
rank used in the polarizabilities was varied from 1 to 3, to assess the convergence
of the multipole expansion. The results are presented in tables 5 and 6. The ‘Atomic’

Table 5. Comparison of induction energies calculated using the CHF method and using atomic
polarizabilities. See the text for details.

Atomic United Atom Molecular

l¼ 1 l¼ 2 l¼ 3 l¼ 1 l¼ 2 l¼ 3 l¼ 1 l¼ 2 l¼ 3

H2O
rms % 0.21 0.07 0.02 – – – 0.46 0.07 0.03
max % �5.84 �2.36 1.23 – – – �13.94 �2.78 1.22

CO2

rms % 0.23 0.14 0.02 – – – 0.76 0.45 0.07
max % �5.36 �2.30 0.82 – – – �14.09 �7.59 �1.77

C2H2

rms % 0.29 0.12 0.02 0.32 0.11 0.02 0.50 0.20 0.05
max % �7.13 3.40 2.42 �10.55 �5.47 �1.53 �16.14 �8.49 �3.42

C2H4

rms % 0.39 0.12 0.07 0.51 0.14 0.09 0.68 0.27 0.07
max % 11.13 3.06 �2.25 �17.98 �6.41 �3.82 �21.14 �8.91 �3.69
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results use polarizabilities on every nucleus, ‘United Atom’ results do not have polariz-
abilities on H atoms, and the ‘Molecular’ results use a single set of polarizabilities
located at the centre of the molecule. The root mean square (RMS) error and the
maximum error are expressed as a percentage of the total range of energies.

The results indicate that the atomic and united-atom polarizabilities perform well,
especially as the size of the molecule increases. The atomic polarizabilities generally
perform better than the the united-atom polarizabilities, although they appear to be
converging to the same result as the maximum angular momentum l is increased.
When atomic or united-atom polarizabilities up to l¼ 2 are used, the RMS difference
from the CHF results is only a few hundredths of a percent. The improved convergence
of the atomic polarizability models is particularly noticeable for the larger alkanes,
where the molecular convergence is very slow, or non-existent, as l is increased.

From these results, it is concluded that using atomic polarizabilities up to a maximum
rank of l¼ 2 is sufficient to reproduce the ab initio second order induction energies
closely. While using the atomic polarizabilities is more accurate than the united-atom
models, the added simplicity of the united-atom model is appealing, and the united-
atom polarizabilities seem to be more transferable.

6. Towards intermolecular potentials for larger molecules

If two interacting molecules are too large for supermolecule or second-order RSPT cal-
culations of their interaction energy to be performed, then the quantities that can be

Table 6. Comparison of induction energies calculated using the CHF method and using atomic
polarizabilities. See the text for details.

Atomic United Atom Molecular

l¼ 1 l¼ 2 l¼ 3 l¼ 1 l¼ 2 l¼ 3 l¼ 1 l¼ 2 l¼ 3

CH4

rms % 0.23 0.15 0.04 – – – 0.59 0.14 0.08
max % 6.50 4.15 4.04 – – – �20.25 �6.68 �2.63

C2H6

rms % 0.17 0.12 0.04 0.58 0.16 0.09 0.89 0.41 0.10
max % 7.14 3.47 4.41 �22.78 �8.06 �4.67 �25.22 �11.73 �4.77

C3H8

rms % 0.18 0.09 0.05 0.46 0.12 0.07 0.91 0.45 0.17
max % 5.95 2.91 5.49 �16.81 �6.01 �3.27 �25.11 �12.86 9.10

C4H10

rms % 0.16 0.10 0.05 0.44 0.12 0.07 1.24 0.72 0.31
max % 7.32 2.33 3.28 �16.47 �5.97 �3.50 �29.82 �18.36 �10.32

C5H12

rms % 0.25 0.12 0.07 0.49 0.14 0.08 1.77 1.18 0.71
max % 10.09 -3.35 4.90 �18.13 �6.26 �4.13 �37.36 37.11 37.37

C6H14

rms % 0.23 0.12 0.07 0.46 0.14 0.08 2.15 1.70 1.33
max % 6.06 �2.69 5.80 �17.47 �7.38 4.31 �50.75 �62.33 �100.36
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calculated in equation (2) and equation (37) are the first-order electrostatic energy, the
charge density overlap, the dispersion energy coefficients and the polarizabilities.
The quantities that cannot be calculated are the MP2 exchange-repulsion energy (and
the parameter K that is obtained from it), the second-order dispersion energy
(and the dispersion damping length scale parameter b that is obtained from it),
and the second-order induction energy.

As a first attempt to find a computationally cheaper method of calculating these
quantities, we recently investigated the possibility of calculating the ‘cheap’ components
of the SIMPER energy, such as the first-order electrostatic energy, using a large basis
set, and the ‘expensive’ components, such as the parameter K, using a smaller basis set
[70]. Five different systems were studied, and typical results are shown in tables 7 and 8.
The complete basis set (CBS) limit was estimated using a two-point extrapolation based
on the aug-cc-pVQZ and aug-cc-pV5Z basis sets, and compared with two-point extra-
polation using smaller basis sets. The aug-cc-pVnZ basis set is abbreviated as nZ in the
tables. The rows labelled ‘MP2’ show the mean and RMS difference between the MP2
supermolecule energy extrapolated using the basis sets at the top of the columns, and
the estimated CBS limit. Similarly, rows labelled ‘Electrostatic’, ‘Dispersion’,
‘Induction’ and ‘Exch-Rep’ show the difference between extrapolating these compo-
nents of the energy using the basis sets shown, and their estimated values in the CBS
limit. The sign of the ‘Mean’ errors is defined as (extrapolated result)�(CBS limit),
and the averages were calculated over a number of attractive and repulsive points on
the potential energy surface.

These initial results were not encouraging. They show that constructing a potential
energy surface from different components calculated using small basis sets, and then
extrapolating these components to the CBS limit, can produce substantial errors. The
errors obtained by extrapolating the components of the energy are larger than the

Table 7. Errors produced by extrapolating the separate components of the HCl dimer energy to the basis set
limit. Mean errors and RMS errors are expressed in microHartree.

DZ-TZ DZ-SPTZ TZ-QZ SPTZ-SPQZ

MP2 Mean 20.0 3.7 3.3 14.1
RMS 50.2 48.3 17.9 30.3

Electrostatic Mean 15.4 �37.8 �3.8 31.5
RMS 47.9 102.6 45.4 79.7

Dispersion Mean 153.5 51.4 42.6 �27.3
RMS 258.3 139.6 68.9 38.1

Induction Mean 301.7 28.8 117.6 �172.8
RMS 784.5 246.2 284.8 334.5

Exch-Rep Mean �450.6 �38.6 �153.1 182.7
RMS 1045.5 283.2 313.6 379.2

Damped Induction Mean 29.7 21.5 0.3 �7.4
RMS 57.1 49.5 3.2 15.1

Modified Exch-Rep Mean �178.6 �31.3 �35.8 17.3
RMS 328.9 118.5 62.9 86.1
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errors obtained by extrapolating the total supermolecule energy. This suggests that
there is a substantial cancellation of errors when the components are added together.

Extrapolating the induction energy gave worse results than extrapolating the electro-
static and dispersion energies, for most of the systems considered. It was suggested [70]
that the reason for this is that the induction energy includes a ‘non-physical’ negative
part, which describes charge transfer from one molecule to an occupied orbital on
the other molecule. This does not occur in the supermolecule calculation, because it vio-
lates the Pauli Principle, but it can occur in RSPT calculations, where the Pauli
Principle is not enforced for intermolecular electron exchange. This non-physical part
of the induction energy converges very slowly with increasing basis set size, so
attempted extrapolation to the CBS limit gives an inaccurate result.

Since the induction energy extrapolates poorly, the exchange-repulsion energy suffers
from the same problem, because the induction energy is used in calculating the
exchange-repulsion energy. The ‘non-physical’ negative part of the induction energy
produces a corresponding positive contribution to the exchange-repulsion energy; this
positive contribution is part of the exchange-induction energy in SAPT [59].

The simplest solution to the problem of extrapolating the induction energy therefore
seems to be to calculate the induction and exchange-induction energies, add them
together, and extrapolate their sum, which is free from non-physical contributions.
However, calculating these components of the energy is computationally expensive.
It takes a similar amount of effort to calculating the MP2 supermolecule energy
itself, and if the MP2 supermolecule energy is available then it can be extrapolated
stably, without the need to consider its separate components.

Our solution was to write the induction energy, like the dispersion energy, as a
damped multipole series in the form of equation (2) and equation (3). Ideally, the multi-
pole series should involve atomic multipole terms, especially for large molecules, but

Table 8. Errors produced by extrapolating the separate components of the Ar-N2 energy to the basis set
limit. Mean errors and RMS errors are expressed in microHartree.

DZ-TZ DZ-SPTZ TZ-QZ SPTZ-SPQZ

MP2 Mean 52.4 25.1 16.1 17.6
RMS 75.2 61.7 19.0 23.0

Electrostatic Mean 19.6 13.2 �1.0 �12.4
RMS 33.9 31.0 21.5 31.9

Dispersion Mean 91.4 �5.0 36.2 �32.5
RMS 125.7 18.8 47.8 39.4

Induction Mean 42.2 22.7 12.2 �84.5
RMS 89.4 40.0 20.5 205.0

Exch-Rep Mean �100.8 �5.8 �31.3 147.0
RMS 144.4 35.5 40.2 286.1

Damped Induction Mean 1.5 �0.1 0.7 �0.5
RMS 2.2 0.6 1.1 0.6

Modified Exch-Rep Mean �60.1 17.0 �19.9 62.9
RMS 70.9 58.9 24.8 88.2
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our test calculations only involved only small molecules so a multipole expansion about
the centres of the molecules was used. Unlike the dispersion energy, the damping length
scale parameter b in the induction energy was not fixed by requiring the sum of the
damped multipole series to equal the calculated induction energy. Instead, b was
simply set equal to the value of b used for the dispersion energy. This produces a
‘damped induction energy’, which is not equal to the RSPT induction energy except
at long range, and is much quicker to calculate. We also expect the damped
induction energy to be less affected by non-physical charge transfer than the RSPT
induction energy, since charge transfer is a short-range effect which decreases exponen-
tially with increasing separation, and should therefore not appear in the multipole
series.

In tables 7 and 8, the errors obtained by extrapolating this damped induction energy
are shown in the rows labelled ‘Damped Induction’. The results show that the errors are
greatly reduced, and that they are now smaller than the errors obtained by extrapolat-
ing any of the other components of the energy. When the induction energy is redefined
in this manner, the exchange-repulsion energy also changes, because it is obtained by
subtracting the electrostatic, dispersion and induction energies from the supermolecule
energy. The errors obtained by extrapolating this modified exchange-repulsion
energy are shown in the tables as ‘Modified Exch-Rep’, and they are smaller than the
errors obtained from the unmodified exchange-repulsion energy. They are larger
than the errors produced by extrapolating the damped induction energy, but this is
not unexpected, because the exchange-repulsion energy is larger than the induction
energy.

Since the multipole coefficients Cn in the damped induction energy series can be cal-
culated quickly, the remaining ‘expensive’ components of the potential energy surface
are the parameters K and b. As previously mentioned, obtaining the parameter K
requires expensive supermolecule calculations. The damping functions, defined by the
length scaling parameter b, require second-order RSPT calculations, which are nearly
as expensive as the supermolecule calculations. We therefore tested [70] whether the
parameters K and b could be predicted using calculations with smaller basis sets. The
variation of these parameters with basis set size was not smooth, so no attempt was
made to extrapolate them; the values calculated for smaller basis sets were simply
used directly in the expression for the energy. To test the basis set dependence of b,
the dispersion and damped induction energies were calculated in the CBS limit, and
expressed as damped multipole series, with CBS multipole coefficients Cn, to obtain
the CBS value of b. This was replaced by a value of b calculated from a smaller basis
set, which changed the induction plus dispersion energy calculated from the series by
a small amount. The RMS errors produced for the HCl dimer were 73 microHartree
(when b was calculated from the TZ basis set) and 16 microHartree (QZ basis set),
and for Ar-N2 the RMS errors were 8 microHartree (TZ) and 5 microHartree (QZ).
Using the value of b obtained from these basis sets therefore produced smaller
errors, for the same basis set size, than the errors produced using basis set extrapolation
(shown in the tables). However, the value of K was found to change more significantly
with basis set. The exchange-repulsion energy was estimated using the value of K calcu-
lated from a small basis set, multiplied by the CBS charge density overlap integral, and
the result did not compare well with the CBS exchange-repulsion energy. The errors
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were larger than the errors produced by basis set extrapolation, and this was true for
both the ‘modified’ and unmodified exchange energies.

It will also be useful to investigate whether the CBS extrapolation of the dispersion
energy can be improved. As discussed for the exchange-induction and induction ener-
gies, there is an exchange-dispersion energy which cancels some of the dispersion
energy at short range, although the cancellation is usually much less than it is for
the induction energy. It is reasonable to consider treating the dispersion and
exchange-dispersion energies together as a single term. This would be done by modify-
ing the dispersion damping length scale parameter b, so that the sum of the damped
multipole series equals the sum of the dispersion and exchange-dispersion energies.
Work along these lines is in progress.

Finally, we note that for even larger molecules, the electrostatic energy and charge
density overlap become too expensive to evaluate directly, because the number of inter-
molecular two-electron integrals becomes too large. This can be solved relatively
straightforwardly, using charge density fitting methods [71] to reduce the number of
integrals. Highly correlated ab initio calculations of polarizabilities and dispersion
energy coefficients also become impossible when the molecules are large, and it is neces-
sary either to use computationally cheaper methods, such as time-dependent Kohn-
Sham theory [72], or to assume that atomic polarizabilities are transferable between
chemically similar atoms.

7. Concluding remarks

The calculation of force fields for molecular simulations using mainly or entirely
ab initio methods is an exciting prospect. Some progress has been made recently
along these lines [73–75], but significant advances are needed and are likely to be
made in the near future. For example, the next generation of force fields should rely
less on the assumption of transferability, and more on separate calculations for each
molecule of interest. While the complexity of some molecules (e.g., proteins or DNA)
makes an assumption of transferability inevitable, more sophisticated transferability
schemes should be devised, such as making the atomic C6 dispersion energy coefficients
decrease as the atoms become more positively charged.

Since the early days of modelling intermolecular potentials, the calculation of long-
range multipole coefficients has played an important role, and this should also be
true in the future as models for the short-range damping and exchange-repulsion
energy become more soundly based. The development of computationally inexpensive
density functional theory for calculating molecular properties will be very helpful in
constructing intermolecular potential energy surfaces. The choice of an appropriate
functional is important for calculating molecular electron densities and polarizabilities,
and high-accuracy calculations on smaller molecules will serve as an invaluable bench-
mark for these more approximate methods. The use of density functional theory to cal-
culate short-range components of the intermolecular potential has increased greatly in
recent years [65, 76–79], and this trend will no doubt continue.

As computer power increases, as well as simply increasing the size of the
molecules that can be studied, it will become possible to tackle other important
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problems in molecular simulation. These will include chemical reactions in solution [80],
intramolecular flexibility [81], and the development of models for non-pairwise-additive
potentials [82, 83], which could be incorporated into effective pair potentials.
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